团队介绍:
能源化学与纳米催化团队筹建于2003年,2019年批准为辽宁省重点实验室。实验室面向“双碳目标”,聚焦于氢能、二氧化碳和烷烃的高效转化利用过程中的催化问题研究,强调基础研究、应用开发并重,具备研、用、产一站式研发条件。实验室拥有物理吸附仪、化学吸附仪、原位红外光谱仪、原子层沉积系统等先进大型分析仪器以及多套固定床催化反应评价装置,整体研究条件达到国内先进水平。
团队现有博士成员20余人,均毕业于清华大学、上海交通大学、大连理工大学、吉林大学、沈阳金属研究所、大连化学物理研究所、法国里尔中央理工大学等国内外知名院所,研发经验丰富、实力雄厚。成员包括“兴辽英才特聘教授”、辽宁省“百千万”人才工程”百人层次、千人层次、“兴辽英才青年拔尖人才”、“锦绣英才青年拔尖人才”等各类人才,现有在读硕士研究生30余人。近年来主持国家自然科学基金面上项目1项,青年项目3项,兴辽英才计划项目2项,省部级科研项目20余项,发表高水平论文50余篇。横向课题进款600余万元
团队负责人:
张启俭,教授,辽宁工业大学党委副书记,校长。“辽宁省百千万人才工程”百人层次,辽宁省优秀科技工作者,兴辽英才计划特聘教授,辽宁省高校教学名师。主要从事能源化学相关研究,主持完成国家自然科学基金1项,教育部留学回国人员科研启动基金1项,省级项目若干项,发表高水平学术论文80余篇。
骨干成员:
赵永华,教授,化学与环境工程学院院长,,辽宁省高校教学名师。国家自然科学基金委通讯评审专家、中国化学会会员。长期从事C1资源的高效转化和利用以及燃料电池车载制氢关键技术等方面的研究。主持国家自然科学基金面上项目1项,省级项目若干项,发表论文50余篇。
刘会敏,教授,兴辽英才计划青年拔尖人才,2018年获澳大利亚研究委员会青年研究员奖。近年来从事高效光热协同催化剂的研发工作,主持国家自然科学基金青年项目1项,在Angew. Chem. Int. Ed、Adv. Mater.、ACS Catal.等国际高水平学术期刊上发表论文80余篇。
王欢,副教授,化学与环境工程学院副院长,从事CO2与烃类共转化过程研究,作为主要成员参与国家自然科学基金2项,主持省级项目多项,发表学术论文20余篇。
冯效迁,副教授,锦绣英才计划青年拔尖人才,近年来从事复合结构纳米材料的设计、制备及在异相催化中的应用研究。主持国家自然科学基金青年项目1项,辽宁省科技厅项目2项,教育厅项目2项,发表学术论文20余篇。
卢星宇:副教授,主要从事电化学催化反应机理和应用研究,发表Angew. Chem. Int. Ed等SCI收录刊物论文30余篇,公开和授权发明专利5项。主持国家自然科学基金1项,中科院金属研究所创新培育项目1项,辽宁省自然基金项目1项,横项课题2项。
团队服务领域:
1.液态储氢及分布式制氢技术
2.含碳小分子的高效转化利用
3.工业催化剂的研发
4.知识产权体系建设。
依托平台:
辽宁省能源化学与纳米催化重点实验室
已开展项目:
团队针对光-电-热协同催化过程中的二甲醚重整制氢、甲烷重整制氢、光电水产氢、CO2加氢、小分子烃类的转化利用、专利体系建设等方面开展了相关项目,积累了丰富的经验。
典型成果:
1.二甲醚重整制氢技术
二甲醚含氢量高、易于液化,是一种理想的氢载体,团队在全国范围内率先开展二甲醚部分氧化重整和水蒸气重整催化剂与催化过程研究,实现二甲醚完全转化,H2收率达到90%以上。
围绕相关成果已获批国家自然科学基金面上项目1项,辽宁省应用基础研究项目2项,发表高水平论文十余篇。
2.甲烷二氧化碳重整技术
甲烷-二氧化碳重整能够将两种温室气体转化为合成气(H2+CO),是一种理想的CO2利用途径。团队针对该过程中的催化剂稳定性不足的问题,优化催化剂设计,并引入太阳能,通过光热协同作用降低反应温度。所研发的催化剂稳定性达到100 h以上;光热协同条件下,反应温度从传统的~750oC大幅降低至~500oC。
围绕相关成果已获批国家自然科学基金青年项目2项,辽宁省自然基金博士启动项目2项,发表高水平论文十余篇。
3.CO2还原制甲醇技术
利用H2还原CO2制甲醇,既可消耗工业过程中产生的过量CO2,又能将难以储运的H2转化为易储运的甲醇,实现高效液态储氢。团队围绕该过程开展深入研究,开发了以Cu-ZnO-ZrO2催化体系为代表的CO2还原制甲醇关键技术,甲醇产量达到~5 mol/(g·h),对辽西地区新能源产业的发展有重要的推动作用。
围绕相关成果已发表高水平论文十余篇。
相关高水平论文
1. Li D, Liu H, Xiao X, et al. Carbon diffusion mechanism as an effective stability enhancement strategy: The case study of Ni-based catalyst for photothermal catalytic dry reforming of methane. Chinese Journal of Catalysis, 2025, 70: 399-409.
2. Liu H, Zhao M, Guo J, et al. Plasmonic Cu-Assisted In2O3 Photothermal Catalysts for Directional Hydrogenation of CO2 to Desired Methanol Product. ACS Sustainable Chemistry & Engineering, 2025, 13(15): 5787-5795.
3. Li Y, Sun S, Li D, et al. The Property–Efficiency Relationship over Rh/GaxNby Catalysts in Photothermal Dry Reforming of CH4. Catalysts, 2025, 15(4): 312.
4. Li D, Calebe V C, Li Y, et al. Interstitial N-doped TiO2 for photocatalytic methylene blue degradation under visible light irradiation. Catalysts, 2024, 14(10): 681.
5. Liu H, Sun S, Li D, et al. Catalyst development for O2-assisted oxidative dehydrogenation of propane to propylene. Chemical Communications, 2024, 60(59): 7535-7554.
6. Li Y, Li D, Liu H, et al. In situ fabricating a Rh/Ga2O3 photothermal catalyst for dry reforming of methane. Catalysis Science & Technology, 2024, 14(10): 2722-2729.
7. Sun S, Zhao M, Liu H, et al. Photothermal oxidative dehydrogenation of propane to propylene over Cu/BN catalysts. Frontiers in Chemistry, 2024, 12: 1439185.
8. Meng Q, Gao X, Li D, et al. Constructing Interconnected Hollow Mesopore Sn-Si Mixed Oxide Microspheres by Aerosol-Assisted Alkali Treatment with Enhanced Catalytic Performance in Baeyer-Villiger Oxidation. Catalysts, 2023, 13(12): 1494.
9. Fu Z, Li D Z, Zhou L D, et al. A mini review on oxidative dehydrogenation of propane over boron nitride catalysts. Petroleum Science, 2023, 20(4): 2488-2498.
10. Wang J, Meng Q, Zhang Q. Aerosol-assisted synthesis of mesoporous Cu/ZnO–ZrO2 catalyst with highly selective photothermal CO2 reduction to methanol. Dalton Transactions, 2023, 52(18): 6019-6028.
11. Ni Z, Wang Q, Guo Y, et al. Research progress of tungsten oxide-based catalysts in photocatalytic reactions. Catalysts, 2023, 13(3): 579.
12. Feng X, Zhao Y, Zhao Y, et al. A mini review on recent progress of steam reforming of ethanol. RSC advances, 2023, 13(34): 23991-24002.
13. Fu Z, Qi P, Liu H, et al. Influence of Oxidative Properties of CexZr1−xO2 Catalyst on Partial Oxidation of Dimethyl Ether. Catalysts, 2022, 12(12): 1536.
14. Ni Z, Djitcheu X, Gao X, et al. Effect of preparation methods of CeO2 on the properties and performance of Ni/CeO2 in CO2 reforming of CH4. Scientific Reports, 2022, 12(1): 5344.
15. Li J, Zhang Q, Zhao Y, et al. Alkaline earth metal oxide modification of Ni/Al2O3 for hydrogen production from the partial oxidation and reforming of dimethyl ether. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122(2): 1193-1202.
16. Wang J, Qu X, Djitcheu X, et al. Photo-assisted effective and selective reduction of CO2 to methanol on a Cu–ZnO–ZrO2 catalyst. New Journal of Chemistry, 2022, 46(44): 21268-21277.
17. Guo Y, Wang Q, Liu S, et al. A brief review: The application of long afterglow luminescent materials in environmental remediation. RSC advances, 2023, 13(24): 16145-16153.
18. Li Y, Liu H, Zheng Z, et al. Synthesis of glycerol carbonate via alcoholysis of urea with glycerol: Current status and future prospects. Industrial & Engineering Chemistry Research, 2022, 61(17): 5698-5711.
19. Qi P, Wang J, Djitcheu X, et al. Techniques for the characterization of single atom catalysts. RSC advances, 2022, 12(2): 1216-1227.
20. Qi P, Gao X, Wang J, et al. A minireview on catalysts for photocatalytic N2 fixation to synthesize ammonia. RSC advances, 2022, 12(3): 1244-1257.
21. Liu H, Shi L, Zhang Q, et al. Photothermal catalysts for hydrogenation reactions. Chemical Communications, 2021, 57(11): 1279-1294.
22. Guo J, Liu H, Li D, et al. A minireview on the synthesis of single atom catalysts. RSC advances, 2022, 12(15): 9373-9394.
23. Liu H, Gao X, Shi D, et al. Recent progress on photothermal heterogeneous catalysts for CO2 conversion reactions. Energy Technology, 2022, 10(2): 2100804.
24. Xue Y, Chao S, Xu M, et al. Multi-layers hexagonal hole MXene trap constructed by carbon vacancy defect regulation strategy enables high energy density potassium-ions storage. Energy Storage Materials, 2024, 71, 103558.
25. Feng X, Zhao Y, Liu S, et al. Flower-like hollow Ni0.5/xMgO-Al2O3 catalysts with excellent stability for dry reforming of methane: The role of Mg addition. Fuel, 2024, 358, 130029.
26. Fan W, Tan D, Zhang Q, et al. Computational study of diketopyrrolopyrrole-based organic dyes for dye sensitized solar cell applications. Journal of Molecular Graphics and Modelling, 2015, 57, 62-69.
27. Wang S S, Song Y H, Zhao Y H, et al. Amorphous silica-alumina composite with regulated acidity for efficient production of hydrogen via steam reforming of dimethyl ether. Catalysis Today, 2020, 351, 68-74.
28. Long X, Zhang Q, Liu Z T, et al. Magnesia modified H-ZSM-5 as an efficient acidic catalyst for steam reforming of dimethyl ether. Applied Catalysis B: Environmental, 2013, 134, 381-388.
29. Zhang Q, Du F, He X, et al. Hydrogen production via partial oxidation and reforming of dimethyl ether. Catalysis Today, 2009, 146(1-2), 50-56.
30. Feng X, Wang K, Zhou M, et al. Metal organic framework derived Ni/CeO2 catalyst with highly dispersed ultra-fine Ni nanoparticles: Impregnation synthesis and the application in CO2 methanation. Ceramics International, 2021, 47(9), 12366-12374.
31. Meng Q, Gao X, Sun T, et al. Aerosol-Assisted Synthesis of Sn–Si Composite Oxide Microspheres with the Hollow Mesoporous Structure for Baeyer–Villiger Oxidation. Catalysts, 2023, 13(12), 1460.
32. Zhao R, Meng Q, Wang G, et al. Facile Synthesis of Hierarchical Sn‐Beta Zeolite by Tuning Chemical Equilibrium of Fluoride Etching. European Journal of Inorganic Chemistry, 2025, 28(8), e202400692.
33. Zhao Y H, Cai Y F, Zhang Q J, et al. Fe/Acid‐montmorillonite as effective Fenton‐like catalyst for the removal of methylene blue. Journal of Chemical Technology & Biotechnology, 2022, 97(11), 3163-3171.
34. Zhao Y H, Geng J T, Cai Y F, et al. One-step synthesis of metallic Ni–C/Al2O3 directly applied for CO2 reforming of CH4. International Journal of Hydrogen Energy, 2019, 44(39), 21651-21658.
35. Xingyu Lu, Kuang-Hsu. Wu, Bingsen Zhang, et al. Highly efficient electro-reforming of 5-hydroxymethylfurfural on vertically oriented nickel nanosheet/carbon hybrid catalysts, Structure-function relationships, Angewandte Chemie International Edition, 2021, 60, 14528-14535.
36. Xingyu Lu, Dan Wang, Kuang-Hsu Wu, et al. Oxygen reduction to hydrogen peroxide on oxidized nanocarbon: Identification and quantification of active sites, Journal of Colloid and Interface Science, 2020, 573, 376-383.
37. Xingyu Lu, Ke Qi, Xueya Da, et al. Selective electrooxidation of 5-hydroxymethylfurfural to 5-formyl-furan-2-formic acid on non-metallic polyaniline catalysts: structure–function relationships. Chemical Science, 2024, 15, 11043-11052.
38. Xingyu Lu, Di Wang, Xueya Dai, et al. Atomic-level rhodium doping into NiO for boosting the selective electrooxidation of HMF to FFCA in neutral electrolyte. Chemical Engineering Journal, 2024, 496, 154092.
39. Xingyu Lu, Ke Qi, Di Wang, et al. Highly efficient electrocatalytic oxidation of 5-hydroxymethylfurfural on copper nanocrystalline/carbon hybrid catalysts: Structure-function relations, Catalysis Science & Technology, 2022, 12, 6437.
40. Xingyu Lu, Xueya. Dai, Ke, et al. Paired electrosynthesis strategy for enhancing 2, 5-Furardicarboxylic acid formation rate. Applied Surface Science, 2023, 648, 158833.
41. Xingyu Lu, Jialong Zhang, Xueya Dai, et al. Two-electron oxygen reduction reaction on nanocarbon materials for onsite H2O2 electrochemical synthesis: selectivity enhancement via oxygen and nitrogen Co-doping, Chemcatchem, 2022, 14, e202200947.
42. Zebang Sun, Xingyu Lu, Highly selective hydrogen peroxide electrosynthesis on copper phthalocyanine: interface engineering with an azo-polymer. Journal of Materials Chemistry A, 2024, 12, 4788-4795.
典型成果图片: